
Chapter 1  Introduction

1.1  Background

The mathematical representation of physical entities

Three of the more important mathematical systems for representing the entities of contemporary
engineering  and  physical  science  are  the  (three-dimensional)  vector  algebra,  the  more  general
tensor  algebra,  and  geometric  algebra.  Grassmann algebra  is  more  general  than  vector  algebra,
overlaps aspects of the tensor algebra, and underpins geometric algebra. It predates all three. In
this  book  we  will  show  that  it  is  only  via  Grassmann  algebra  that  many  of  the  geometric  and
physical  entities  commonly  used  in  the  engineering  and  physical  sciences  may  be  represented
mathematically in a way which correctly models their pertinent properties and leads straightfor-
wardly to principal results. 
As a case in point we may take the concept of force. It is well known that a force is not satisfacto-
rily represented by a (free) vector, yet contemporary practice is still to use a (free) vector calcu-
lus for this task. The deficiency may be made up for by verbal appendages to the mathematical
statements: for example ‘where the force f acts along the line through the point P’. Such verbal
appendages,  being  necessary,  and  yet  not  part  of  the  calculus  being  used,  indicate  that  the
calculus itself is not adequate to model force satisfactorily. In practice this inadequacy is coped
with  in  terms  of  a  (free)  vector  calculus  by  the  introduction  of  the  concept  of  moment.  The
conditions of equilibrium of a rigid body include a condition on the sum of the moments of the
forces  about  any  point.  The  justification  for  this  condition  is  not  well  treated  in  contemporary
texts. It will be shown later however that by representing a force correctly in terms of an element
of  the  Grassmann  algebra,  both  force-vector  and  moment  conditions  for  the  equilibrium  of  a
rigid  body  may  be  united  in  one  condition,  a  natural  consequence  of  the  algebraic  processes
alone.
Since  the  application  of  Grassmann  algebra  to  mechanics  was  known  during  the  nineteenth
century  one  might  wonder  why,  with  the  ‘progress  of  science’,  it  is  not  currently  used.  Indeed
the same question might be asked with respect to its application in many other fields. To attempt
to answer these questions, a brief biography of Grassmann is included as an appendix. In brief,
the  scientific  world  was  probably  not  ready  in  the  nineteenth  century  for  the  new  ideas  that
Grassmann proposed,  and now, in the twenty-first  century,  seems only just  becoming aware of
their potential.

The central concept of the Ausdehnungslehre

Grassmann’s  principal  contribution  to  the  physical  sciences  was  his  discovery  of  a  natural
language  of  geometry  from which  he  derived  a  geometric  calculus  of  significant  power.  For  a
mathematical  representation of  a  physical  phenomenon to  be  ‘correct’  it  must  be  of  a  tensorial
nature and since many ‘physical’ tensors have direct geometric counterparts, a calculus applica-
ble to geometry may be expected to find application in the physical sciences.
The word ‘Ausdehnungslehre’ is most commonly translated as ‘theory of extension’, the funda-
mental product operation of the theory then becoming known as the exterior product. The notion
of  extension  has  its  roots  in  the interpretation of  the algebra in  geometric  terms:  an element  of
the  algebra  may  be  ‘extended’  to  form  a  higher  order  element  by  its  (exterior)  product  with
another, in the way that a point may be extended to a line, or a line to a plane, by a point exterior
to it. The notion of exteriorness is equivalent algebraically to that of linear independence. If the
exterior  product  of  elements  of  grade  1  (for  example,  points  or  vectors)  is  non-zero,  then  they
are independent.
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the  algebra  may  be  ‘extended’  to  form  a  higher  order  element  by  its  (exterior)  product  with
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to it. The notion of exteriorness is equivalent algebraically to that of linear independence. If the
exterior  product  of  elements  of  grade  1  (for  example,  points  or  vectors)  is  non-zero,  then  they
are independent.
A line may be defined by the exterior product of any two distinct points on it. Similarly, a plane
may  be  defined  by  the  exterior  product  of  any  three  distinct  points  in  it,  and  so  on  for  higher
dimensions.  This  independence  with  respect  to  the  specific  points  chosen  is  an  important  and
fundamental property of the exterior product. Each time a higher dimensional object is required
it  is  simply created out  of  a  lower dimensional  one by multiplying by a  new element  in  a  new
dimension. Intersections of elements are also obtainable as products.
Simple elements of the Grassmann algebra may be interpreted as defining subspaces of a linear
space.  The  exterior  product  then  becomes  the  operation  for  building  higher  dimensional  sub-
spaces  (higher  order  elements)  from  a  set  of  lower  dimensional  independent  subspaces.  A
second product operation called the regressive product may then be defined for determining the
common lower dimensional subspaces of a set of higher dimensional non-independent subspaces.

Comparison with the vector and tensor algebras

The Grassmann algebra is a tensorial algebra, that is, it concerns itself with the types of mathe-
matical entities and operations necessary to describe physical quantities in an invariant manner.
In fact, it has much in common with the algebra of anti-symmetric tensors – the exterior product
being  equivalent  to  the  anti-symmetric  tensor  product.  Nevertheless,  there  are  conceptual  and
notational differences which make the Grassmann algebra richer and easier to use.
Rather  than  a  sub-algebra  of  the  tensor  algebra,  it  is  perhaps  more  meaningful  to  view  the
Grassmann algebra  as  a  super-algebra  of  the  three-dimensional  vector  algebra  since  both  com-
monly  use  invariant  (coordinate-free)  notations.  The  principal  differences  are  that  the  Grass-
mann  algebra  has  a  dual  axiomatic  structure,  can  treat  higher  order  elements  than  vectors,  can
differentiate  between  points  and  vectors,  generalizes  the  notion  of  ‘cross  product’,  is  indepen-
dent of dimension, and possesses the structure of a true algebra.

Algebraicizing the notion of linear dependence

Another way of viewing Grassmann algebra is  as linear or  vector algebra onto which has been
introduced a product operation which algebraicizes the notion of linear dependence.  This prod-
uct operation is called the exterior product and is symbolized with a wedge ⋀.
If  vectors  x1,  x2,  x3,  …  are  linearly  dependent,  then  it  turns  out  that  their  exterior  product  is
zero: x1 ⋀ x2 ⋀ x3 ⋀… = 0. If they are independent, their exterior product is non-zero.
Conversely, if the exterior product of vectors x1, x2, x3, … is zero, then the vectors are linearly
dependent.  Thus  the  exterior  product  brings  the  critical  notion  of  linear  dependence  into  the
realm of direct algebraic manipulation.
Although  this  might  appear  to  be  a  relatively  minor  addition  to  linear  algebra,  we  expect  to
demonstrate in this book that nothing could be further from the truth: the consequences of being
able to model linear dependence with a product operation are far reaching, both in facilitating an
understanding of  current  results,  and in  the  generation  of  new results  for  many of  the  algebras
and  their  entities  used  in  science  and  engineering  today.  These  include  of  course  linear  and
multilinear  algebra,  but  also  vector  and  tensor  algebra,  screw  algebra,  hypercomplex  algebras,
and Clifford algebras.
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Although  this  might  appear  to  be  a  relatively  minor  addition  to  linear  algebra,  we  expect  to
demonstrate in this book that nothing could be further from the truth: the consequences of being
able to model linear dependence with a product operation are far reaching, both in facilitating an
understanding of  current  results,  and in  the  generation  of  new results  for  many of  the  algebras
and  their  entities  used  in  science  and  engineering  today.  These  include  of  course  linear  and
multilinear  algebra,  but  also  vector  and  tensor  algebra,  screw  algebra,  hypercomplex  algebras,
and Clifford algebras.

Grassmann algebra as a geometric calculus

Most importantly however, Grassmann’s contribution has enabled the operations and entities of
all  of  these  algebras  to  be  interpretable  geometrically,  thus  enabling  us  to  bring  to  bear  the
power of geometric visualization and intuition into our algebraic manipulations.
It is well known that a vector x1  may be interpreted geometrically as representing a direction in
space. If the space has a metric, then the magnitude of x1 is interpreted as its length. The introduc-
tion of  the exterior  product  enables us to extend  the entities  of  the space to higher dimensions.
The  exterior  product  of  two  vectors  x1⋀x2,  called  a  bivector,  may  be  visualized  as  the  two-
dimensional analogue of a direction, that is, a planar direction. Neither vectors nor bivectors are
interpreted as being located anywhere since they do not possess sufficient information to specify
independently both a  direction and  a  position.  If  the space has a  metric,  then the magnitude  of
x1⋀x2 is interpreted as its area, and similarly for higher order products.
We depict  a  simple bivector by its  vector factors arranged head-to-tail  linked by the ghost of a
parallelogram.

Depicting a simple bivector. This bivector is located nowhere.

For  applications  to  the  physical  world,  however,  the  Grassmann  algebra  possesses  a  critical
capability  that  no  other  algebra  possesses  so  directly:  it  can  distinguish  between  points  and
vectors  and treat  them as  separate  entities.  Lines  and planes  are  examples  of  higher  order  con-
structs  from points  and  vectors,  which  have  both  position  and  direction.   A  line  can  be  repre-
sented by the exterior product of any two points on it, or by any point on it and a vector parallel
to it.

Point⋀vector depiction Point⋀point depiction

Two different depictions of a bound vector in its line.

A plane can be represented by the exterior product of any point on it and a bivector parallel to it,
any two points on it and a vector parallel to it, or any three points on it.
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Point⋀vector⋀vector Point⋀point⋀vector Point⋀point⋀point

Three different depictions of a bound bivector.

Finally, it should be noted that the Grassmann algebra subsumes all of real algebra, the exterior
product reducing in this case to the usual product operation among real numbers.
Here then is a geometric calculus par excellence.

1.2  The Exterior Product

The anti-symmetry of the exterior product

The  exterior  product  of  two  vectors  x  and  y  of  a  linear  space  yields  the  bivector  x ⋀ y.  The
bivector is not a vector, and so does not belong to the original linear space. In fact the bivectors
form their own linear space.
The fundamental defining characteristic of the exterior product is its anti-symmetry. That is, the
product changes sign if the order of the factors is reversed.

x ⋀ y ⩵ - y ⋀ x   1.1

From this we can easily show the equivalent relation, that the exterior product of a vector with
itself is zero.

x ⋀ x ⩵ 0   1.2

This is as expected because x is linearly dependent on itself.

The exterior product is associative, distributive, and behaves linearly as expected with scalars.

Exterior products of vectors in a three-dimensional space

By way of example, suppose we are working in a three-dimensional space, with basis e1, e2, and
e3. Then we can express vectors x and y as linear combinations of these basis vectors:

x ⩵ a1 e1 + a2 e2 + a3 e3

y ⩵ b1 e1 + b2 e2 + b3 e3

Here, the ai and bi are of course scalars. Taking the exterior product of x and y and multiplying
out the product allows us to express the bivector x ⋀ y as a linear combination of basis bivectors.

x ⋀ y ⩵ (a1 e1 + a2 e2 + a3 e3) ⋀ (b1 e1 + b2 e2 + b3 e3)
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x ⋀ y ⩵ (a1 b1) e1 ⋀ e1 + (a1 b2) e1 ⋀ e2 + (a1 b3) e1 ⋀ e3 + (a2 b1) e2 ⋀ e1 +
(a2 b2) e2 ⋀ e2 + (a2 b3) e2 ⋀ e3 + (a3 b1) e3 ⋀ e1 + (a3 b2) e3 ⋀ e2 + (a3 b3) e3 ⋀ e3

The first simplification we can make is to put all basis bivectors of the form ei ⋀ ei to zero [1.2]
. The second simplification is to use the anti-symmetry of the product [1.1] and collect the terms
of the bivectors which are not essentially different (that is, those that may differ only in the order
of their factors, and hence differ only by a sign). The product x ⋀ y can then be written:

x ⋀ y ⩵ (a1 b2 - a2 b1) e1 ⋀ e2 + (a2 b3 - a3 b2) e2 ⋀ e3 + (a3 b1 - a1 b3) e3 ⋀ e1

The scalar factors appearing here are just those which would have appeared in the usual vector
cross  product  of  x  and  y.  However,  there  is  an  important  difference.  The  exterior  product
expression does not  require the vector  space to have a metric,  while the usual  definition of  the
cross product, because it generates a vector orthogonal to x and y, necessarily assumes a metric.
Furthermore, the exterior product is associative and valid for any number of vectors in spaces of
arbitrary  dimension,  while  the  cross  product  is  not  associative  and  is  necessarily  confined  to
products of vectors in a space of three dimensions.
For example, we may continue the product by multiplying x ⋀ y by a third vector z.

z ⩵ c1 e1 + c2 e2 + c3 e3

x ⋀ y ⋀ z ⩵
((a1 b2 - a2 b1) e1 ⋀ e2 + (a2 b3 - a3 b2) e2 ⋀ e3 + (a3 b1 - a1 b3) e3 ⋀ e1) ⋀
(c1 e1 + c2 e2 + c3 e3)

Adopting  the  same  simplification  procedures  as  before  we  obtain  the  trivector  x ⋀ y ⋀ z
expressed in basis form.

x ⋀ y ⋀ z ⩵ (a1 b2 c3 - a3 b2 c1 + a2 b3 c1 + a3 b1 c2 - a1 b3 c2 - a2 b1 c3) e1 ⋀ e2 ⋀ e3

We depict  a simple trivector by its vector factors arranged head-to-tail  linked by the ghost of a
parallelepiped.

A trivector is the exterior product of a three vectors

A trivector in a space of three dimensions has just one component. Its coefficient is the determi-
nant  of  the  coefficients  of  the  original  three  vectors.  Clearly,  if  these  three  vectors  had  been
linearly  dependent,  this  determinant  would  have  been  zero.  In  a  metric  space,  this  coefficient
would  be  proportional  to  the  volume  of  the  parallelepiped  formed  by  the  vectors  x,  y,  and  z.
Hence  the  geometric  interpretation  of  the  algebraic  result:  if  x,  y,  and  z  are  lying  in  a  planar
direction, that is, they are dependent, then the volume of the parallelepiped defined is zero.
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would  be  proportional  to  the  volume  of  the  parallelepiped  formed  by  the  vectors  x,  y,  and  z.
Hence  the  geometric  interpretation  of  the  algebraic  result:  if  x,  y,  and  z  are  lying  in  a  planar
direction, that is, they are dependent, then the volume of the parallelepiped defined is zero.
We  see  here  also  that  the  exterior  product  begins  to  give  geometric  meaning  to  the  often
inscrutable operations of the algebra of determinants. In fact we shall see that all the operations
of determinants are straightforward consequences of the properties of the exterior product.
In  three-dimensional  metric  vector  algebra,  the  vanishing  of  the  scalar  triple  product  of  three
vectors  is  often used as  a  criterion of  their  linear  dependence,  whereas in  fact  the vanishing of
their  exterior  product  (valid  also  in  a  non-metric  space)  would  suffice.  It  is  interesting  to  note
that the notation for the scalar triple product, or ‘box’ product, is Grassmann’s original notation
for the exterior product, viz [x y z].
Finally,  we can  see  that  the  exterior  product  of  more  than  three  vectors  in  a  three-dimensional
space will always be zero, since they must be dependent.

Terminology: elements and entities

To this  point  we  have  been  referring  to  the  elements  of  the  space  under  discussion  as  vectors,
and their  higher order constructs in three dimensions as bivectors  and trivectors.  In the general
case we will  refer to the exterior product of an unspecified number of vectors as a multivector,
and the exterior product of m vectors as an m-vector.
The word ‘vector’ however, is in current practice used in two distinct ways. The first and tradi-
tional  use  endows  the  vector  with  its  well-known geometric  properties  of  direction,  sense,  and
(possibly) magnitude. In the second and more recent,  the term vector may refer to any element
of a linear space, even though the space is devoid of geometric context. 
In this book, we adopt the traditional practice and use the term vector only when we intend it to
have  its  traditional  geometric  interpretation  of  a  (free)  arrow-like  entity.  When  referring  to  an
element of a linear space which we are not specifically interpreting geometrically, we simply use
the term element. The exterior product of m 1-elements of a linear space will thus be referred to
as an m-element. (In the GrassmannAlgebra package however, we have had to depart somewhat
from  this  convention  in  the  interests  of  common  usage:  symbols  representing  1-elements  are
called VectorSymbols).
The  reason  this  distinction  is  important  is  because  it  allows  us  to  introduce  points  into  the
algebra.  By adding a new element  called the Origin  into the basis  of  a  vector  space which has
the  interpretation  of  a  point,  we  are  able  to  distinguish  two  types  of  1-element:  vectors  and
points.  This  simple  distinction  leads  to  a  sophisticated  and  powerful  tableau  of  free  (involving
only vectors) and bound (involving points) entities with which to model geometric and physical
systems.
Science and engineering make use of mathematics by endowing its constructs with geometric or
physical  interpretations.  We  will  use  the  term  entity  to  refer  to  such  a  construct  of  elements
which  we  specifically  wish  to  endow with  a  geometric  or  physical  interpretation.  For  example
we would say that (geometric) points  and vectors  and (physical) positions  and directions  are 1-
entities,  while  (geometric)  bound  vectors,  bivectors  and  screws,  and  (physical)  forces  and
angular  momenta  are  2-entities.  Points,  vectors,  bound  vectors  and  bivectors  and  screws  are
examples  of  geometric  entities.  Positions,  directions,  forces  and  momenta  are  examples  of
physical entities.
Points,  lines,  planes  and  multiplanes  may  also  be  conveniently  considered  for  computational
purposes as geometric entities, or we may also define them in the more common way as a set of
points: the set of all points in the entity. (A 1-element is in an m-element if their exterior product
is zero.) We call such a set of points a geometric object. We interpret elements of a linear space
geometrically or physically, while we represent  geometric or physical entities by elements of a
linear space.
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Points,  lines,  planes  and  multiplanes  may  also  be  conveniently  considered  for  computational
purposes as geometric entities, or we may also define them in the more common way as a set of
points: the set of all points in the entity. (A 1-element is in an m-element if their exterior product
is zero.) We call such a set of points a geometric object. We interpret elements of a linear space
geometrically or physically, while we represent  geometric or physical entities by elements of a
linear space.
An entity need not have a unique grade. For example, we will see in Volume 2 that hypercom-
plex entities like complex numbers, quaternions, and Clifford numbers are usually multigraded,
a typical case being the sum of a scalar (of grade 0) and a bivector (of grade 2),  with a typical
interpretation being that of a rotation.
A more complete summary of terminology is given at the end of the book.

The grade of an element

The exterior product of m 1-elements is called an m-element. The value m is called the grade of
the m-element. For example the element u ⋀ v ⋀ x ⋀ y is of grade 4.
An m-element may be denoted by a symbol underscripted with the value m. For example:

α
4

⩵ u ⋀ v ⋀ x ⋀ y

For simplicity, however, we do not generally denote 1-elements with an underscripted ‘1’.

The grade of a scalar is 0. We shall see that this is a natural consequence of the exterior product
axioms formulated for elements of general grade.
The dimension  of the underlying linear space of 1-elements is denoted by n.  Elements of grade
greater than n are zero.
The complementary grade of an m-element in an n-space is n–m.

GrassmannAlgebra  recognizes  the  symbol  Dimension  as  the  numerical  dimension  of  the
current underlying linear space; and the symbol ★n as the symbolic dimension of any underlying
linear space under theoretical consideration.

Interchanging the order of the factors in an exterior product

The  exterior  product  is  defined  to  be  associative.  Hence  we  can  isolate  any  two  adjacent  1-
element factors. Interchanging the order of these factors will change the sign of the product:

…⋀ x ⋀ y ⋀… ⩵ …⋀ (x ⋀ y) ⋀… ⩵ …⋀ (-(y ⋀ x)) ⋀… ⩵ -(…⋀ y ⋀ x ⋀…)

In  fact,  interchanging  the  order  of  any  two  1-element  factors  will  also  change  the  sign  of  the
product.

…⋀ x ⋀…⋀ y ⋀… ⩵ -(…⋀ y ⋀…⋀ x ⋀…)

To see why this is so, suppose the number of factors between x and y is m. First move y to the
immediate  left  of  x.  This  will  cause  m+1 changes  of  sign.  Then  move  x  to  the  position  that  y
vacated. This will cause m changes of sign. In all there will be 2m+1 changes of sign, equivalent
to just one sign change.
Note that it is only elements of odd grade that anti-commute. If, in a product of two elements, at
least  one of  them is  of  even grade,  then the elements  commute.  For example,  2-elements  com-
mute with all other elements.

(x ⋀ y) ⋀ z ⩵ z ⋀ (x ⋀ y)
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A brief summary of the properties of the exterior product

In  this  section  we  summarize  a  few  of  the  more  important  properties  of  the  exterior  product
some of which we have already introduced informally.  In Chapter 2:  The Exterior Product,  the
complete set of axioms is discussed.

◼ The exterior product of an m-element and a k-element is an (m+k)-element.

◼ The exterior product is associative.

α
m
⋀ β

k
 ⋀ γ

r
⩵ α

m
⋀ β

k
⋀ γ

r
   1.3

◼ The unit scalar acts as an identity under the exterior product.

α
m

⩵ 1 ⋀ α
m

⩵ α
m
⋀ 1   1.4

◼ Scalars factor out of products.

a α
m
 ⋀ β

k
⩵ α

m
⋀ a β

k
 ⩵ a α

m
⋀ β

k
   1.5

◼ An exterior product is anti-commutative whenever the grades of the factors are both odd.

α
m
⋀ β

k
⩵ (-1)m k β

k
⋀ α

m   1.6

◼ The exterior product is both left and right distributive under addition.

α
m
+ β

m
 ⋀ γ

r
⩵ α

m
⋀ γ

r
+ β

m
⋀ γ

r
α
m
⋀ β

r
+ γ

r
 ⩵ α

m
⋀ β

r
+ α

m
⋀ γ

r
  1.7

1.3  The Regressive Product

The regressive product as a dual product to the exterior product

One of Grassmann’s major contributions, which appears to be all but lost to current mathemat-
ics, is the regressive product. The regressive product is the real foundation for the theory of the
inner  and  scalar  products  (and  their  generalization,  the  interior  product).  Yet  the  regressive
product  is  often  ignored  and  the  inner  product  defined  as  a  new  construct  independent  of  the
regressive  product.  This  approach  not  only  has  potential  for  inconsistencies,  but  also  fails  to
capitalize  on  the  wealth  of  results  available  from  the  natural  duality  between  the  exterior  and
regressive  products.  The  approach  adopted  in  this  book  follows  Grassmann’s  original  concept.
The  regressive  product  is  a  simple  dual  operation  to  the  exterior  product  and  an  enticing  and
powerful  symmetry  is  lost  by  ignoring  it,  particularly  in  the  development  of  metric  results
involving complements and interior products.
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inner  and  scalar  products  (and  their  generalization,  the  interior  product).  Yet  the  regressive
product  is  often  ignored  and  the  inner  product  defined  as  a  new  construct  independent  of  the
regressive  product.  This  approach  not  only  has  potential  for  inconsistencies,  but  also  fails  to
capitalize  on  the  wealth  of  results  available  from  the  natural  duality  between  the  exterior  and
regressive  products.  The  approach  adopted  in  this  book  follows  Grassmann’s  original  concept.
The  regressive  product  is  a  simple  dual  operation  to  the  exterior  product  and  an  enticing  and
powerful  symmetry  is  lost  by  ignoring  it,  particularly  in  the  development  of  metric  results
involving complements and interior products.
The underlying beauty of the Ausdehnungslehre is due to this symmetry, which in turn is due to
the  fact  that  linear  spaces  of  m-elements  and  linear  spaces  of  (n–m)-elements  have  the  same
dimension. This too is the key to the duality of the exterior and regressive products. For exam-
ple, the exterior product of m 1-elements is an m-element. The dual to this is that the regressive
product  of  m  (n–1)-elements  is  an  (n–m)-element.  This  duality  has  the  same  form  as  that  in  a
Boolean  algebra:  if  the  exterior  product  corresponds  to  a  type  of  ‘union’  then  the  regressive
product corresponds to a type of ‘intersection’.
It is this duality that permits the definition of complement in Chapter 5, and hence to the defini-
tion  of  the  interior,  inner  and  scalar  products  in  Chapter  6.  To  underscore  this  duality  it  is
proposed to adopt here the ⋁ (‘vee’) for the regressive product operation. Unfortunately the now
almost  universal  adoption  of  the  ‘wedge’  for  the  exterior  product  (and  hence  the  ‘vee’  for  the
regressive  product)  yields  the  reverse  symbolic  connotation  to  the  notions  of  ‘union’  and
‘intersection’ in a Boolean algebra.

Unions and intersections of spaces

Consider  a  (non-zero)  2-element  x ⋀ y.  We  can  test  to  see  if  any  given  1-element  z  is  in  the
subspace  spanned  by  x  and  y  by  taking  the  exterior  product  of  x ⋀ y  with  z  and  seeing  if  the
result  is  zero.  From  this  point  of  view,  x ⋀ y  is  an  element  which  can  be  used  to  define  the
subspace instead of the individual 1-elements x and y.
Thus we can define the space  of  x ⋀ y  as  the space of  all  1-elements z  such that  x ⋀ y ⋀ z = 0.
We extend this to more general elements by defining the space of a simple m-element A  as the
space of all 1-elements z  such that A ⋀ z = 0.  (We discuss the notion of space in more detail in
the section on terminology at the end of the book).
We will  also need the notion of  congruence.  We will  say that  two elements  (of  any grade)  are
congruent if one is a scalar multiple of the other. For example x and 2 x are congruent; x ⋀ y and
-x ⋀ y are congruent. Congruent elements define the same subspace. We denote congruence by
the  symbol  ≡.  The  following  concepts  of  union  and  intersection  only  make  sense  up  to
congruence.
A union of elements is an element defining the subspace they together span.

The dual concept to union of elements is intersection of elements. An intersection of elements is
an element defining the subspace they span in common.
Suppose we have three independent 1-elements:  x,  y,  and z.  A union of x ⋀ y  and y ⋀ z  is  any
element congruent to x ⋀ y ⋀ z. An intersection of x ⋀ y and y ⋀ z is any element congruent to y.
The computation of unions and intersections by exterior and regressive products alone is limited
to some special (but important) cases as we shall see below and in Chapter 3. The computation
of  unions  and  intersections  in  general  is  best  done  using  the  notion  of  span.  See  the  section
Unions and Intersections.

A brief summary of the properties of the regressive product

In this section we summarize a few of the more important properties of the regressive product.
In Chapter 3: The Regressive Product, we develop the complete set of axioms from those of the
exterior  product.  By  comparing  the  axioms  below  with  those  for  the  exterior  product  in  the
previous section, we see that they are effectively generated by replacing ⋀ with ⋁, and m by n–
m. The unit element 1 in its form 10  becomes 1n .
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In this section we summarize a few of the more important properties of the regressive product.
In Chapter 3: The Regressive Product, we develop the complete set of axioms from those of the
exterior  product.  By  comparing  the  axioms  below  with  those  for  the  exterior  product  in  the
previous section, we see that they are effectively generated by replacing ⋀ with ⋁, and m by n–
m. The unit element 1 in its form 10  becomes 1n .

◼ The regressive product of an m-element and a k-element in an n-space is an (m+k–n)-element.

◼ The regressive product is associative.

α
m
⋁ β

k
 ⋁ γ

r
⩵ α

m
⋁ β

k
⋁ γ

r
   1.8

◼ The unit n-element 1n  acts as an identity under the regressive product.

α
m

⩵ 1
n
⋁ α

m
⩵ α

m
⋁ 1

n   1.9

◼ Scalars factor out of products.

a α
m
 ⋁ β

k
⩵ α

m
⋁ a β

k
 ⩵ a α

m
⋁ β

k
   1.10

◼ A regressive product is anti-commutative whenever the complementary grades of the factors
are both odd.

α
m
⋁ β

k
⩵ (-1)(n-m) (n-k) β

k
⋁ α

m   1.11

◼ The regressive product is both left and right distributive under addition.

α
m
+ β

m
 ⋁ γ

r
⩵ α

m
⋁ γ

r
+ β

m
⋁ γ

r
α
m
⋁ β

r
+ γ

r
 ⩵ α

m
⋁ β

r
+ α

m
⋁ γ

r
  1.12

Note that when using the GrassmannAlgebra  application, the unit n-element should be denoted
by 1

★n to ensure a correct interpretation of the symbol.

The Common Factor Axiom

Up  to  this  point  we  have  no  way  of  connecting  the  dual  axiom  structures  of  the  exterior  and
regressive products. That is, given a regressive product of an m-element and a k-element, how do
we  find  the  (m+k–n)-element  to  which  it  is  equivalent,  expressed  only  in  terms  of  exterior
products?
To  make  this  connection  we  need  to  introduce  a  further  axiom  which  we  call  the  Common
Factor Axiom. The form of the Common Factor Axiom may seem somewhat arbitrary, but it is
in fact one of the simplest forms which enable intersections to be calculated. This can be seen in
the following application of the axiom to a vector 3-space.
Suppose  x,  y,  and  z  are  three  independent  vectors  in  a  vector  3-space.  The  Common  Factor
Axiom  says  that  the  regressive  product  of  the  two  bivectors  x ⋀ z  and  y ⋀ z  may  also  be
expressed as the regressive product of the trivector x ⋀ y ⋀ z with their common factor z.
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(x ⋀ z) ⋁ (y ⋀ z) ⩵ (x ⋀ y ⋀ z) ⋁ z

Since the space is 3-dimensional, we can write any trivector such as x ⋀ y ⋀ z  as a scalar factor
(a, say) times the unit trivector (introduced in axiom 1.9).

(x ⋀ y ⋀ z) ⋁ z ⩵ a 1
3
 ⋁ z ⩵ a z

This then gives us the axiomatic structure to say that the regressive product of two such elements
possessing an element in common is congruent to that element.

(x ⋀ z) ⋁ (y ⋀ z) ≡ z

We depict this relation by showing the common factor (intersection) of the bivectors docked in a
convenient  position  relative  to  each  other.  Remember,  the  bivectors  are  not  actually  located
anywhere!

The intersection of two bivectors in a three-dimensional space

Of  course  this  is  just  a  simple  case.  More  generally,  let  αm ,  βk ,  and  μs  be  simple  elements  with
m+k+s = n, where n is the dimension of the space. Then the Common Factor Axiom states that

α
m
⋀ μ

s
 ⋁ β

k
⋀ μ

s
 ⩵ α

m
⋀ β

k
⋀ μ

s
 ⋁ μ

s
m + k + s ⩵ n   1.13

There  are  many  rearrangements  and  special  cases  of  this  formula  which  we  will  encounter  in
later  chapters.  For  example,  when s  is  zero,  the Common Factor  Axiom shows that  the regres-
sive  product  of  an  m-element  with  an (n–m)-element  is  a  scalar  which can be  expressed in  the
alternative form of a regressive product with the unit 1.

α
m
⋁ β
n-m

⩵ α
m
⋀ β
n-m

 ⋁ 1

The Common Factor Axiom allows us to prove a particularly useful result: the Common Factor
Theorem.  The  Common  Factor  Theorem expresses  any  regressive  product  in  terms  of  exterior
products alone. This of course enables us to calculate intersections of more general elements.
Most importantly however we will see later that the Common Factor Theorem has a counterpart
expressed  in  terms  of  exterior  and  interior  products,  called  the  Interior  Common  Factor  Theo-
rem.  This  forms  the  principal  expansion  theorem for  interior  products  and  from which  we  can
derive many of the most important theorems relating exterior and interior products.
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Most importantly however we will see later that the Common Factor Theorem has a counterpart
expressed  in  terms  of  exterior  and  interior  products,  called  the  Interior  Common  Factor  Theo-
rem.  This  forms  the  principal  expansion  theorem for  interior  products  and  from which  we  can
derive many of the most important theorems relating exterior and interior products.
The  Interior  Common  Factor  Theorem,  and  the  Common  Factor  Theorem  upon  which  it  is
based, are possibly the most important theorems in the Grassmann algebra.
In the next section we informally apply the Common Factor Theorem to obtain the intersection
of two bivectors in a three-dimensional space.

The intersection of two bivectors in a three-dimensional space

Suppose that x ⋀ y and u ⋀ v are non-congruent bivectors in a three dimensional space. Since the
space has only three dimensions, the bivectors must have an intersection. We denote the regres-
sive product of x ⋀ y and u ⋀ v by z:

z ⩵ (x ⋀ y) ⋁ (u ⋀ v)

We  will  see  in  Chapter  3:  The  Regressive  Product  that  this  can  be  expanded  by  the  Common
Factor Theorem to give

(x ⋀ y) ⋁ (u ⋀ v) ⩵ (x ⋀ y ⋀ v) ⋁ u - (x ⋀ y ⋀ u) ⋁ v   1.14

But we have already seen in section 1.2 that  in a  3-space,  the exterior  product  of  three vectors
will, in any given basis, give the basis trivector, multiplied by the determinant of the components
of the vectors making up the trivector.
Additionally, we note that the regressive product (intersection) of a vector with an element like
the basis trivector completely containing the vector, will just give an element congruent to itself.
Thus the regressive product leads us to an explicit expression congruent to the intersection of the
two bivectors.

z ≡ Det[x, y, v] u - Det[x, y, u] v

Here Det[x,y,v] is the determinant of the components of x, y, and v in the chosen basis. We
could also have obtained an equivalent formula expressing z in terms of x and y instead of u and
v by simply interchanging the order of the bivector factors in the original regressive product.
Note  carefully  however,  that  this  formula  only  finds  the  common  factor  up  to  congruence,
because  until  we  determine  an  explicit  expression  for  the  unit  n-element  in  terms  of  basis  ele-
ments (which we do by introducing the complement operation in Chapter 5), we cannot usefully
use  axiom [1.9]  above.  Nevertheless,  this  is  not  to  be  seen as  a  restriction.  Rather,  as  we shall
see in the next section it  leads to interesting insights as to what can be accomplished when we
work in spaces without a metric, such as projective spaces.

1.4  Geometric Interpretations

Points and vectors

In this section we introduce two different types of geometrically interpreted elements which can
be represented by the elements of a linear space: vectors and points. Then we look at the interpre-
tations  of  the  various  higher  grade  elements  that  we  can  generate  from  them  by  the  exterior
product. Finally we see how the regressive product can be used to calculate intersections of these
higher order elements.
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In this section we introduce two different types of geometrically interpreted elements which can
be represented by the elements of a linear space: vectors and points. Then we look at the interpre-
tations  of  the  various  higher  grade  elements  that  we  can  generate  from  them  by  the  exterior
product. Finally we see how the regressive product can be used to calculate intersections of these
higher order elements.
As  discussed  in  section  1.2,  the  term  ‘vector’  is  often  used  to  refer  to  an  element  of  a  linear
space with no intention of implying an interpretation. In this book however, we reserve the term
for  a  particular  type  of  geometric  interpretation:  that  associated  with  representing  direction.
Exterior  products  of  vectors  then  represent  higher-dimensional  analogues  to  the  notion  of
direction.
But an element of a linear space may also be interpreted as a point. Of course vectors may also
be used to represent points, but only relative to another given point. Hence they cannot represent
absolute  position.  These  vectors  are  properly  called  position  vectors.  Common  practice  often
omits explicit reference to this other given point, or perhaps may refer to it verbally. Points can
be represented satisfactorily in many cases by position vectors alone, but when both position and
direction are required in the same element we must distinguish mathematically between the two.
To  describe  true  position  in  a  three-dimensional  physical  space,  a  linear  space  of  four  dimen-
sions  is  required,  one  for  an  origin  point,  and  the  other  three  for  the  three  spatial  directions.
Since the exterior  product  is  independent  of  the dimension of  the underlying space,  it  can deal
satisfactorily  with  points  and  vectors  together.  The  usual  three-dimensional  vector  algebra
however cannot.
Suppose x, y, and z are elements of a linear space interpreted as vectors. Vectors always have a
direction.  But only when the linear space has a metric do they also have a magnitude.  Since to
this stage we have not yet introduced the notion of metric, we will only be discussing interpreta-
tions  and  applications  which  do  not  require  elements  (other  than  congruent  elements)  to  be
commensurable.
Of course, vectors may be summed in a space with no metric, the standard geometric interpreta-
tion of this operation being either the ‘triangle rule’ or the ‘parallelogram rule’.

Sums and differences of points

A  point  is  defined  as  the  sum  of  the  origin  point  and  a  vector.  If  ★3  is  the  origin,  and  x  is  a
vector, then ★3 +x is a point.

P ⩵ ★3 + x   1.15

The vector x is called the position vector of the point P.

The sum of the origin and a vector is a point

The sum of a point and a vector is another point.
Q ⩵ P + y ⩵ (★3 + x) + y ⩵ ★3 + (x + y)

We depict this by conveniently docking the tails of the vectors at the points.
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★3

P

Q
x

y

x + y

The sum of a point and a vector is another point

The difference of two points is a vector since the origins cancel.
P - Q ⩵ (★3 + x ) - (★3 + x + y) ⩵ y

This  simple  result  is  actually  the  seminal  underpinning  of  the  relationship  between  points  and
vectors.

The difference of two points is a vector

A  scalar  multiple  of  a  point  is  called  a  weighted  point.  For  example,  if  m  is  a  scalar,  mP  is  a
weighted point with weight m.
The sum of two points gives the point halfway between them with a weight of 2.

P1 + P2 ⩵ (★3 + x1) + (★3 + x2) ⩵ 2 ★3 +
x1 + x2

2
 ⩵ 2 Pc

Thus the sum of two points yields a result which is of quite a different nature to their difference.
The sum of two points is a weighted point, while their difference is a vector - the first a located
entity; the second un-located.

The sum of two points is a point of weight 2 located mid-way between them

◆ Historical Note

The point was originally considered the fundamental geometric entity of interest. However the
difference of  points  was clearly no longer  a  point,  since reference to the origin had been lost.
Sir William Rowan Hamilton coined the term ‘vector’ for this new entity since adding a vector
to a point ‘carried’ the point to a new point.

Determining a mass-centre

A classic application of a sum of weighted points is to the determination of a centre of mass.
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Consider  a  collection  of  points  Pi  weighted  with  masses  mi.  The  sum  of  the  weighted  points
gives the point PG at the mass-centre (centre of gravity) weighted with the total mass M.
To show this, first add the weighted points and collect the terms involving the origin.

M PG ⩵ m1 (★3 + x1) + m2 (★3 + x2) + m3 (★3 + x3) + …
⩵ (m1 + m2 + m3 + …) ★3 + (m1 x1 + m2 x2 + m3 x3 + …)

Dividing through by the total mass M gives the centre of mass.

PG ⩵ ★3 +
m1 x1 + m2 x2 + m3 x3 + …

m1 + m2 + m3 + …

◼ To fix  ideas,  we  take  a  simple  example  demonstrating  that  centres  of  mass  can  be  accumu-
lated  in  any  order.  Suppose  we  have  three  points  P,  Q,  and  R  with  masses  p,  q,  and  r.  The
centres of mass taken two at a time are given by

(p + q) GPQ ⩵ p P + q Q
(q + r) GQR ⩵ q Q + r R
(p + r) GPR ⩵ p P + r R

Now take the  centre  of  mass  of  each of  these  with  the  other  weighted point.  Clearly,  the  three
sums will be equal.

(p + q) GPQ + r R ⩵ (q + r) GQR + p P ⩵ (p + r) GPR + q Q
⩵ p P + q Q + r R ⩵ (p + q + r) GPQR

It  is  straightforward  to  depict  these  relationships.  In  the  diagram  below  we  have  depicted  the
mass of a point by its area.

P Q

R

GPQ

GPR

GQR

GPQR

Centres of mass can be accumulated in any order

Lines and planes

The exterior product of a point and a vector gives a bound vector. Bound vectors are the entities
we  need  for  mathematically  representing  lines.  A  line  is  the  set  of  points  in  the  bound  vector.
That is, it consists of all the points whose exterior product with the bound vector is zero.
In practice, we usually compute with lines by computing with their bound vectors. For example,
to  get  the  intersection  of  two  lines  in  the  plane,  we  take  the  regressive  product  of  their  bound
vectors. By abuse of terminology we may therefore often refer to a bound vector as a line, or to
a line as a bound vector.
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In practice, we usually compute with lines by computing with their bound vectors. For example,
to  get  the  intersection  of  two  lines  in  the  plane,  we  take  the  regressive  product  of  their  bound
vectors. By abuse of terminology we may therefore often refer to a bound vector as a line, or to
a line as a bound vector.
A bound vector can be defined by the exterior product of a point and a vector, or of two points.
In the first  case we represent  the line L  through  the point  P  in  the direction of  x  by any entity
congruent to the exterior product of P  and x.  In the second case we can introduce Q  as P + x  to
get the same result.

P

x

L ≡ P ⋀ x

P

Q

L ≡ P ⋀ Q

Two different depictions of a bound vector in its line.

L ≡ P ⋀ x ≡ P ⋀ (Q - P) ≡ P ⋀ Q

A line is independent of the specific point used to define it. To see this, consider any other point
R on the line. Since R is on the line it can be represented by the sum of P with an arbitrary scalar
multiple of the vector x:

L ≡ R ⋀ x ⩵ (P + a x) ⋀ x ⩵ P ⋀ x

A line may also be represented by the exterior product of any two points on it.
L ≡ P ⋀ R ⩵ P ⋀ (P + a x) ⩵ a P ⋀ x

Note  that  the  bound  vectors  P ⋀ x  and  P ⋀ R  are  (in  general)  different,  but  congruent.  They
therefore define the same line.

L ≡ P ⋀ x ≡ R ⋀ x ≡ P ⋀ R   1.16

P

x
R

x

Two bound vectors defining the same line

These concepts extend naturally to higher dimensional constructs. For example a plane Π may be
represented by the exterior product of single point on it together with a bivector in the direction
of the plane, any two points on it together with a vector in it (not parallel to the line joining the
points), or any three points on it (not in the same line).

Π ≡ P ⋀ x ⋀ y ≡ P ⋀ Q ⋀ y ≡ P ⋀ Q ⋀ R   1.17
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P ⋀ x ⋀ y P ⋀ Q ⋀ y P ⋀ Q ⋀ R

Three different depictions of a bound bivector in its plane.

To  build  higher  dimensional  geometric  entities  from  lower  dimensional  ones,  we  simply  take
their exterior product. For example we can build a line by taking the exterior product of a point
with any point or vector exterior to it. Or we can build a plane by taking the exterior product of a
line with any point or vector exterior to it.

The intersection of two lines

We can use the  regressive product  to  find the  intersection of  two geometric  entities  if  together
the  entities  span  the  whole  space.  For  example,  suppose  we  have  two  lines  in  a  plane  and  we
want to find the point of intersection P. As we have seen we can represent the lines in a number
of ways. For example:

L1 ≡ P1 ⋀ x1 ⩵ (★3 + ν1) ⋀ x1 ⩵ ★3 ⋀ x1 + ν1 ⋀ x1

L2 ≡ P2 ⋀ x2 ⩵ (★3 + ν2) ⋀ x2 ⩵ ★3 ⋀ x2 + ν2 ⋀ x2

The  point  of  intersection  of  L1  and  L2  is  the  point  P  given  by  (congruent  to)  the  regressive
product of the lines L1 and L2.

P ≡ L1 ⋁ L2 ⩵ (★3 ⋀ x1 + ν1 ⋀ x1) ⋁ (★3 ⋀ x2 + ν2 ⋀ x2)

Here we depict the lines overlaid by their defining bound vectors.

P1

x1

P2

x2

P

The intersection of lines as the common factor of bound vectors

Expanding the formula for P gives four terms.
P ≡ (★3 ⋀ x1) ⋁ (★3 ⋀ x2) + (ν1 ⋀ x1) ⋁ (★3 ⋀ x2) +

(★3 ⋀ x1) ⋁ (ν2 ⋀ x2) + (ν1 ⋀ x1) ⋁ (ν2 ⋀ x2)

The  Common  Factor  Theorem  for  the  regressive  product  of  elements  of  the  form
(x ⋀ y) ⋁ (u ⋀ v)  in  a  linear  space  of  three  dimensions  was  introduced  as  formula  [1.14]   in
section 1.3 as

(x ⋀ y) ⋁ (u ⋀ v) ⩵ (x ⋀ y ⋀ v) ⋁ u - (x ⋀ y ⋀ u) ⋁ v
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Since a bound 2-space is three dimensional (its basis contains three elements - the origin and two
vectors), we can use this formula to expand each of the terms in P.

(★3 ⋀ x1) ⋁ (★3 ⋀ x2) ⩵ (★3 ⋀ x1 ⋀ x2) ⋁ ★3 - (★3 ⋀ x1 ⋀ ★3) ⋁ x2

(ν1 ⋀ x1) ⋁ (★3 ⋀ x2) ⩵ (ν1 ⋀ x1 ⋀ x2) ⋁ ★3 - (ν1 ⋀ x1 ⋀ ★3) ⋁ x2

(★3 ⋀ x1) ⋁ (ν2 ⋀ x2) ⩵ -(ν2 ⋀ x2) ⋁ (★3 ⋀ x1)
⩵ -(ν2 ⋀ x2 ⋀ x1) ⋁ ★3 + (ν2 ⋀ x2 ⋀ ★3) ⋁ x1

(ν1 ⋀ x1) ⋁ (ν2 ⋀ x2) ⩵ (ν1 ⋀ x1 ⋀ x2) ⋁ ν2 - (ν1 ⋀ x1 ⋀ ν2) ⋁ x2

The term ★3 ⋀ x1 ⋀ ★3 is zero because of the exterior product of repeated factors. The four terms
involving the exterior product of three vectors, for example ν1 ⋀ x1 ⋀ x2, are also zero since any
three  vectors  in  a  two-dimensional  vector  space  must  be  dependent  (The  vector  space  is  2-
dimensional since it is the vector sub-space of a bound 2-space). Hence we can express the point
of intersection P as congruent to a weighted point.

P ≡ (★3 ⋀ x1 ⋀ x2) ⋁ ★3 + (★3 ⋀ ν2 ⋀ x2) ⋁ x1 - (★3 ⋀ ν1 ⋀ x1) ⋁ x2

If  we express  the vectors  in  terms of  a  basis,  e1  and e2  say,  we can reduce this  formula (after
some manipulation) to:

P ≡ ★3 +
Det[ν2, x2]

Det[x1, x2]
x1 -

Det[ν1, x1]

Det[x1, x2]
x2

Here, the determinants are the determinants of the coefficients of the vectors in the given basis.

To  verify  that  P  does  indeed  lie  on  both  the  lines  L1  and  L2,  we  only  need  to  carry  out  the
straightforward verification that the products P ⋀ L1 and P ⋀ L2 are both zero.
Although this approach in this simple case is certainly more complex than the standard algebraic
approach in the plane, its interest lies in the facts that it is immediately generalizable to intersec-
tions of any geometric objects in spaces of any number of dimensions, and that it leads to easily
computable solutions.

1.5  The Complement

The complement as a correspondence between spaces

The Grassmann algebra has a duality in its structure which not only gives it a certain elegance,
but is also the basis of its power. We have already introduced the regressive product as the dual
product  operation  to  the  exterior  product.  In  this  section  we  extend  the  notion  of  duality  to
define  the  complement  of  an  element.  The  notions  of  metric,  orthogonality,  and  interior,  inner
and scalar products are all based on the complement.
Consider  a  linear  space  of  dimension n  with  basis  e1,  e2,  …,  en.  The set  of  all  the  essentially
different m-element products of these basis elements forms the basis of another linear space, but
this  time of  dimension  n

m .  For  example,  when n  is  3,  the  linear  space  of  2-elements  has  three
elements in its basis: e1⋀e2, e1⋀e3, e2⋀e3.
The  anti-symmetric  nature  of  the  exterior  product  means  that  there  are  just  as  many  basis  ele-
ments  in  the  linear  space  of  (n–m)-elements  as  there  are  in  the  linear  space  of  m-elements.
Because these linear spaces have the same dimension, we can set up a correspondence between
m-elements and (n–m)-elements. That is, given any m-element, we can define its corresponding
(n–m)-element.  The  (n–m)-element  is  called  the  complement  of  the  m-element.  Normally  this
correspondence is set up between basis elements and extended to all other elements by linearity.
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The anti-symmetric  nature  of  the  exterior  product  means  that  there  are  just  as  many basis  ele-
ments  in  the  linear  space  of  (n–m)-elements  as  there  are  in  the  linear  space  of  m-elements.
Because these linear spaces have the same dimension, we can set up a correspondence between
m-elements and (n–m)-elements. That is, given any m-element, we can define its corresponding
(n–m)-element.  The  (n–m)-element  is  called  the  complement  of  the  m-element.  Normally  this
correspondence is set up between basis elements and extended to all other elements by linearity.

The Euclidean complement

Suppose  we  have  a  three-dimensional  linear  space  with  basis  e1,  e2,  e3.  We  define  the
Euclidean  complement  of  each  of  the  basis  elements  as  the  basis  2-element  whose  exterior
product  with  the  basis  element  gives  the  basis  3-element  e1 ⋀ e2 ⋀ e3.  We  denote  the  comple-
ment of an element by placing a ‘bar’ over it. Thus:

e1 ⩵ e2 ⋀ e3 ⟹ e1 ⋀ e1 ⩵ e1 ⋀ e2 ⋀ e3

e2 ⩵ e3 ⋀ e1 ⟹ e2 ⋀ e2 ⩵ e1 ⋀ e2 ⋀ e3

e3 ⩵ e1 ⋀ e2 ⟹ e3 ⋀ e3 ⩵ e1 ⋀ e2 ⋀ e3

The Euclidean complement is the simplest type of complement and defines a Euclidean metric,
that  is,  where  the  basis  elements  are  mutually  orthonormal.  This  was  the  only  type  of  comple-
ment  considered  by  Grassmann.  In  Chapter  5:  The  Complement,  we  will  show  however,  that
Grassmann’s concept of complement is easily extended to more general metrics. Note carefully
that we will be using the notion of complement to define the notions of orthogonality and metric,
and until we do this, we will not be relying on their existence in Chapters 2, 3, and 4.
With  the  definitions  above,  we  can  now  proceed  to  define  the  Euclidean  complement  of  a
general 1-element x in a three-dimensional space.

x ⩵ a e1 + b e2 + c e3

To do this we need to endow the complement operation with the property of linearity so that it
has meaning for linear combinations of basis elements.

x ⩵ a e1 + b e2 + c e3 ⩵ a e1 + b e2 + c e3 ⩵ a e2 ⋀ e3 + b e3 ⋀ e1 + c e1 ⋀ e2

In a vector 3-space, the complement of the vector x is the bivector x, and the complement of the
bivector x is the vector x. Hence they are mutual complements.

A vector and its bivector complement in a three-dimensional vector space

In  section  1.6  we  will  see  that  the  complement  of  an  element  is  orthogonal  to  the  element,
because  we  will  define  the  interior  product  (and  hence  inner  and  scalar  products)  using  the
complement. We can start to see how the scalar product of a 1-element with itself might arise by
expanding  the  exterior  product  of  x  with  its  complement  to  exhibit  the  expected  scalar  as  the
coefficient of the basis n-element.
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In  section  1.6  we  will  see  that  the  complement  of  an  element  is  orthogonal  to  the  element,
because  we  will  define  the  interior  product  (and  hence  inner  and  scalar  products)  using  the
complement. We can start to see how the scalar product of a 1-element with itself might arise by
expanding  the  exterior  product  of  x  with  its  complement  to  exhibit  the  expected  scalar  as  the
coefficient of the basis n-element.

x ⋀ x ⩵ (a e1 + b e2 + c e3) ⋀ (a e2 ⋀ e3 + b e3 ⋀ e1 + c e1 ⋀ e2)
⩵ a2 + b2 + c2 e1 ⋀ e2 ⋀ e3

The Euclidean complement of a basis 2-element can be defined in a manner analogous to that for
1-elements,  that  is,  such  that  the  exterior  product  of  a  basis  2-element  with  its  complement  is
equal to the basis 3-element. The complement of a 2-element in 3-space is therefore a 1-element.

e2 ⋀ e3 ⩵ e1 ⟹ e2 ⋀ e3 ⋀ e2 ⋀ e3 ⩵ e2 ⋀ e3 ⋀ e1 ⩵ e1 ⋀ e2 ⋀ e3

e3 ⋀ e1 ⩵ e2 ⟹ e3 ⋀ e1 ⋀ e3 ⋀ e1 ⩵ e3 ⋀ e1 ⋀ e2 ⩵ e1 ⋀ e2 ⋀ e3

e1 ⋀ e2 ⩵ e3 ⟹ e1 ⋀ e2 ⋀ e1 ⋀ e2 ⩵ e1 ⋀ e2 ⋀ e3

To complete the definition of Euclidean complement in a 3-space we note that

1 ⩵ e1 ⋀ e2 ⋀ e3 e1 ⋀ e2 ⋀ e3 ⩵ 1

Summarizing these results for the Euclidean complement of the basis elements of a Grassmann
algebra in three dimensions shows the essential symmetry of the complement operation.

Complement Palette
Basis Complement

1 e1 ⋀ e2 ⋀ e3

e1 e2 ⋀ e3

e2 -(e1 ⋀ e3)

e3 e1 ⋀ e2

e1 ⋀ e2 e3

e1 ⋀ e3 -e2

e2 ⋀ e3 e1

e1 ⋀ e2 ⋀ e3 1

The complement of a complement

Applying  the  Euclidean  complement  operation  twice  to  a  1-element  x  shows  that  the  comple-
ment of the complement of x in a 3-space is just x itself.

x ⩵ a e1 + b e2 + c e3

x ⩵ a e1 + b e2 + c e3 ⩵ a e1 + b e2 + c e3 ⩵ a e2 ⋀ e3 + b e3 ⋀ e1 + c e1 ⋀ e2

x ⩵ a e2 ⋀ e3 + b e3 ⋀ e1 + c e1 ⋀ e2 ⩵ a e2 ⋀ e3 + b e3 ⋀ e1 + c e1 ⋀ e2
⩵ a e1 + b e2 + c e3

⟹ x ⩵ x
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More generally,  as we shall  see in Chapter 5:  The Complement,  we can show that the comple-
ment of the complement of any element is the element itself, apart from a possible sign.

α
m

⩵ (-1)m (n-m) α
m

  1.18

This result is independent of the correspondence that we set up between the m-elements and (n–
m)-elements of the space, except that the correspondence must be symmetric. This is equivalent
to the requirement that the metric tensor (and inner product) be symmetric. 
Whereas in a 3-space, the complement of the complement of a 1-element is the element itself, in
a 2-space it  turns out to be the negative of the element.  Here is a palette of basis elements and
their complements for a 2-space.

Complement Palette
Basis Complement

1 e1 ⋀ e2

e1 e2

e2 -e1

e1 ⋀ e2 1

Although  this  sign  dependence  on  the  dimension  of  the  space  and  grade  of  the  element  might
appear arbitrary, it turns out to capture some essential properties of the elements in their spaces
to  which  we  have  become accustomed.  For  example  in  a  2-space,  taking  the  complement  of  a
vector  x  once  rotates  it  anticlockwise  by  π2 .  Taking  the  complement  twice  rotates  it  anticlock-
wise by a further right angle into -x.

x ⩵ a e1 + b e2

x ⩵ a e1 + b e2 ⩵ a e2 - b e1

x ⩵ a e2 - b e1 ⩵ -a e1 - b e2

Hence any vector and its complement can form an orthogonal basis for a vector 2-space.
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x

x

x = -x

The complement operation rotating vectors in a vector 2-space

The Complement Axiom

From the Common Factor Axiom we can derive a powerful relationship between the Euclidean
complements of elements and their exterior and regressive products. The Euclidean complement
of the exterior product of two elements is equal to the regressive product of their complements.

A ⋀ B ⩵ A ⋁ B   1.19

However,  although  this  may  be  derived  in  this  simple  case,  to  develop  the  Grassmann  algebra
for  general  metrics,  we  will  assume  this  relationship  holds  independent  of  the  metric.  It  thus
takes on the mantle of an axiom.
This  axiom, which we call  the  Complement  Axiom, is  the quintessential  formula of  the Grass-
mann algebra.  It  expresses  the  duality  of  its  two fundamental  operations  on elements  and their
complements. We note the formal similarity to de Morgan’s law in Boolean algebra.
We will also see that adopting this formula for general complements will enable us to compute
the complement of any element of a space once we have defined the complements of its basis 1-
elements.

◼ As  an  example  consider  two  vectors  x  and  y  in  3-space,  and  their  exterior  product.  The
Complement Axiom becomes

x ⋀ y ⩵ x ⋁ y

The  complement  of  the  bivector  x ⋀ y  is  a  vector.  The  complements  of  x  and  y  are  bivectors.
The  regressive  product  of  these  two  bivectors  is  a  vector.  The  following  graphic  depicts  this
relationship, and the orthogonality of the elements. We discuss orthogonality in the next section.
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Visualizing the complement axiom in vector three-space

1.6  The Interior Product

The definition of the interior product

The  interior  product  is  a  generalization  of  the  inner  or  scalar  product  to  elements  of  arbitrary
grade. First we will define the interior product and then show how the inner and scalar products
are special cases.

The interior product  of an element αm  with an element βk  is  denoted αm ⊖ β
k  and defined  to be the

regressive product of αm  with the complement of βk . 

α
m
⊖ β

k
⩵ α

m
⋁ β

k
  1.20

The grade of an interior product αm ⊖ β
k  may be seen from the definition to be m+(n–k)–n = m–k.

Note  that  while  the  grade  of  a  regressive  product  depends  on  the  dimension  of  the  underlying
linear space, the grade of an interior product is independent  of the dimension of the underlying
space.  This  independence  underpins  the  important  role  the  interior  product  plays  in  the  Grass-
mann  algebra  -  the  exterior  product  sums  grades  while  the  interior  product  differences  them.
However,  grades  may be  arbitrarily  summed,  but  not  arbitrarily  differenced,  since  there  are  no
elements of negative grade.
Thus the order of factors in an interior product is important. When the grade of the first element
is less than that of the second element, the result is necessarily zero. 

Inner products and scalar products

The  interior  product  of  two  elements  αm  and  βm  of  the  same  grade  is  (also)  called  their  inner
product.  Since the  grade of  an interior  product  is  the  difference of  the  grades  of  its  factors,  an
inner product is always of grade zero, hence scalar.
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The  interior  product  of  two  elements  αm  and  βm  of  the  same  grade  is  (also)  called  their  inner
product.  Since the  grade of  an interior  product  is  the  difference of  the  grades  of  its  factors,  an
inner product is always of grade zero, hence scalar.
In  the  case  that  the  two  factors  of  the  product  are  of  grade  1,  the  product  is  called  a  scalar
product. This conforms to common usage.
In Chapter 6 we will show that the inner product is symmetric, that is, the order of the factors is
immaterial.

α
m
⊖ β

m
⩵ β

m
⊖ α

m   1.21

When the inner product is between simple elements it can be expressed as the determinant of the
array of scalar products according to the following formula:

(α1 ⋀ α2 ⋀⋯⋀ αm) ⊖ (β1 ⋀ β2 ⋀⋯⋀ βm) ⩵ Det[αi ⊖ βj]   1.22

For example, the inner product of two 2-elements α1 ⋀α2 and α1 ⋀β2 may be written

(α1 ⋀ α2) ⊖ (β1 ⋀ β2) ⩵ (α1 ⊖ β1) (α2 ⊖ β2) - (α1 ⊖ β2) (α2 ⊖ β1)   1.23

Sequential interior products

Definition  [1.20]  for  the  interior  product  leads  to  an  immediate  and  powerful  formula  relating
exterior  and  interior  products  by  grace  of  the  associativity  of  the  regressive  product  and  the
Complement Axiom [1.19].

A ⊖ (β1 ⋀ β2 ⋀…⋀ βk) ⩵ A ⋁ (β1 ⋀ β2 ⋀…⋀ βk)

⩵ A ⋁ β1 ⋁ β2 ⋁…⋁ βk ⩵ (((A ⊖ β1) ⊖ β2) ⊖… ) ⊖ βk

A ⊖ (β1 ⋀ β2 ⋀…⋀ βk)
⩵ (A ⊖ β1) ⊖ (β2 ⋀…⋀ βk)

⩵ (((A ⊖ β1) ⊖ β2) ⊖ … ) ⊖ βk
  1.24

By reordering  the  βi  factors  it  becomes  apparent  that  there  are  many different  forms  in  which
these formulae can be expressed. For example, the inner product of two bivectors can be rewrit-
ten to display the interior product of the first bivector with either of the vectors

(x ⋀ y) ⊖ (u ⋀ v) ⩵ ((x ⋀ y) ⊖ u) ⊖ v ⩵ -((x ⋀ y) ⊖ v) ⊖ u

It is the straightforward and consistent derivation of formulae like [1.24] from definition [1.20]
using  only  the  fundamental  exterior,  regressive  and  complement  operations,  that  shows  how
powerful  Grassmann’s  approach  is.  The  alternative  approach  of  simply  introducing  an  inner
product onto a space cannot bring such power to bear.

Orthogonality

As is well known, two 1-elements are said to be orthogonal if their scalar product is zero.
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More  generally,  a  1-element  x  is  orthogonal  to  a  simple  element  A  if  and  only  if  their  interior
product A ⊖ x is zero.
However, for A ⊖ (x1 ⋀ x2 ⋀⋯⋀ xk) to be zero it is only necessary that one of the xi be orthogo-
nal to A.  To show this, suppose it to be (without loss of generality) x1.  Then by formula [1.24]
we can write 

A ⊖ (x1 ⋀ x2 ⋀⋯⋀ xk) ⩵ (A ⊖ x1) ⊖ (x2 ⋀⋯⋀ xk)

Hence it becomes immediately clear that if A ⊖ x1 is zero then so is the whole product.

A ⊖ xi ⩵ 0 ⟹ A ⊖ (…⋀ xi ⋀…) ⩵ 0   1.25

Measure and magnitude

The measure of a simple element A is denoted /A0, and is defined to be the positive square root
of the interior product of the element with itself. Suppose A is expressed as the exterior product
of 1-elements, then we can use formula [1.22] as the basis for computing its measure. 

A ⩵ α1 ⋀ α2 ⋀⋯⋀ αm

>A?2 ⩵ A ⊖ A ⩵ (α1 ⋀ α2 ⋀⋯⋀ αm) ⊖ (α1 ⋀ α2 ⋀⋯⋀ αm) ⩵ Det[αi ⊖ αj]   1.26

Under  a  geometric  interpretation  of  the  space  in  which  1-elements  are  interpreted  as  vectors
representing  displacements,  the  concept  of  measure  corresponds  to  the  concept  of  magnitude.
The magnitude of a vector is its length, the magnitude of a bivector is the area of the parallelo-
gram  formed  by  its  two  vectors,  and  the  magnitude  of  a  trivector  is  the  volume  of  the  paral-
lelepiped formed by its three vectors. The magnitude of a scalar is the scalar itself.
The magnitude of a vector x is, as expected, given by the standard formula.

>x? ⩵ x ⊖ x   1.27

The magnitude of a bivector x ⋀ y is given by formula [1.26] as

>x ⋀ y? ⩵ (x ⋀ y) ⊖ (x ⋀ y) ⩵ Det x ⊖ x x ⊖ y
x ⊖ y y ⊖ y

   1.28

Of  course,  a  bivector  may  be  expressed  in  an  infinity  of  ways  as  the  exterior  product  of  two
vectors,  since  adding  a  scalar  multiple  of  the  first  vector  to  the  second  does  not  change  the
bivector. For example

B ⩵ x ⋀ y ⩵ x ⋀ (y + a x)

From this, the square of its area may be written in either of two ways:
B ⊖ B ⩵ (x ⋀ y) ⊖ (x ⋀ y)
B ⊖ B ⩵ (x ⋀ (y + a x)) ⊖ (x ⋀ (y + a x))

However, multiplying out these expressions using formula [1.26] shows that terms cancel in the
second  expression,  thus  reducing  them  both  to  the  same  expression,  and  demonstrating  the
invariance of the definition.
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However, multiplying out these expressions using formula [1.26] shows that terms cancel in the
second  expression,  thus  reducing  them  both  to  the  same  expression,  and  demonstrating  the
invariance of the definition.

B ⊖ B ⩵ (x ⊖ x) (y ⊖ y) - (x ⊖ y)2

Thus the measure of a bivector is independent of the actual vectors used to express it. Geometri-
cally interpreted, this confirms the elementary result that the area of the corresponding parallelo-
gram (with sides corresponding to the displacements represented by the vectors) is independent
of its shape. These results extend straightforwardly to simple elements of any grade.
The measure of an element is  equal to the measure of its  complement.  By the definition of the
interior product [1.20], and formulae [1.18] and [1.19] we have

α
m
⊖ α

m
⩵ α

m
⋁ α

m
⩵ α

m
⋁ α

m
⩵ (-1)m (n-m) α

m
⋁ α

m
⩵ α

m
⋁ α

m
⩵ α

m
⊖ α

m

A ⊖ A ⩵ A ⊖ A   1.29

A unit element A1 can be defined by the ratio of the element to its measure.

A
B

⩵
A

>A?
  1.30

Calculating interior products from their definition

We can use the interior product definition [1.20], the definitions of the Euclidean complement in
section  1.5,  and  the  regressive  unit  axiom  [1.9]  with  1n = 1 = e1 ⋀ e2 ⋀ e3  to  calculate  interior
products  directly  from  their  definition.  In  what  follows  we  calculate  the  interior  products  of
representative basis elements of a 3-space with Euclidean metric.  As expected, the scalar prod-
ucts e1 ⊖ e1 and e1 ⊖ e2 turn out to be 1 and 0 respectively.

e1 ⊖ e1 ⩵ e1 ⋁ e1 ⩵ e1 ⋁ (e2 ⋀ e3) ⩵ (e1 ⋀ e2 ⋀ e3) ⋁ 1 ⩵ 1 ⋁ 1 ⩵ 1

e1 ⊖ e2 ⩵ e1 ⋁ e2 ⩵ e1 ⋁ (e3 ⋀ e1) ⩵ (e1 ⋀ e3 ⋀ e1) ⋁ 1 ⩵ 0 ⋁ 1 ⩵ 0

Using the Common Factor Axiom [1.13] with the common factor equal to 1, it is straightforward
to see that inner products of identical basis 2-elements are unity.

(e1 ⋀ e2) ⊖ (e1 ⋀ e2) ⩵ (e1 ⋀ e2) ⋁ (e1 ⋀ e2) ⩵ (e1 ⋀ e2) ⋁ e3
⩵ (e1 ⋀ e2 ⋀ e3) ⋁ 1 ⩵ 1 ⋁ 1 ⩵ 1

Inner products of non-identical basis 2-elements are zero.

(e1 ⋀ e2) ⊖ (e2 ⋀ e3) ⩵ (e1 ⋀ e2) ⋁ (e2 ⋀ e3) ⩵ (e1 ⋀ e2) ⋁ e1
⩵ (e1 ⋀ e2 ⋀ e1) ⋁ 1 ⩵ 0 ⋁ 1 ⩵ 0

If a basis 2-element contains a given basis 1-element, then their interior product is not zero.
(e1 ⋀ e2) ⊖ e1 ⩵ (e1 ⋀ e2) ⋁ e1 ⩵ (e1 ⋀ e2) ⋁ (e2 ⋀ e3)
⩵ (e1 ⋀ e2 ⋀ e3) ⋁ e2 ⩵ 1 ⋁ e2 ⩵ e2

If a basis 2-element does not contain a given basis 1-element, then their interior product is zero:
(e1 ⋀ e2) ⊖ e3 ⩵ (e1 ⋀ e2) ⋁ e3 ⩵ (e1 ⋀ e2) ⋁ (e1 ⋀ e2) ⩵ 0

Expanding interior products

To  expand  interior  products,  we  will  use  the  Interior  Common  Factor  Theorem  developed  in
Chapter 6. This theorem shows how an interior product of a simple element αm  with another, not
necessarily simple element of equal or lower grade βk , may be expressed as a linear combination
of the ν  (=  m

k ) essentially different factors αim-k
 (of grade m–k) of the simple element of higher

grade.

26   Chapter 1.nb



To  expand  interior  products,  we  will  use  the  Interior  Common  Factor  Theorem  developed  in
Chapter 6. This theorem shows how an interior product of a simple element αm  with another, not
necessarily simple element of equal or lower grade βk , may be expressed as a linear combination
of the ν  (=  m

k ) essentially different factors αim-k
 (of grade m–k) of the simple element of higher

grade.

α
m
⊖ β

k
⩵ Σ

i⩵1

ν
αi

k
⊖ β

k
 αi

m-k

α
m

⩵ α1
k
⋀ α1
m-k

⩵ α2
k
⋀ α2
m-k

⩵ ⋯ ⩵ αν
k
⋀ αν
m-k

  1.31

For example, the Interior Common Factor Theorem may be used to prove a relationship involv-
ing the interior product of a 1-element x with the exterior product of two factors, each of which
may  not  be  simple.  This  relationship  and  the  special  cases  that  derive  from  it  find  application
throughout the algebra.

α
m
⋀ β

k
 ⊖ x ⩵ α

m
⊖ x ⋀ β

k
+ (-1)m α

m
⋀ β

k
⊖ x   1.32

The Interior Common Factor Theorem may also be expressed in a more algorithmically power-
ful form in terms of the span and cospan of αm .

The interior product of a bivector and a vector

Suppose x is a vector and B = x1 ⋀ x2 is a simple bivector. The interior product of the bivector B
with  the  vector  x  is  the  vector  B ⊖ x.  This  can  be  expanded  by  the  Interior  Common  Factor
Theorem, or formula [1.32] to give:

B ⊖ x ⩵ (x1 ⋀ x2) ⊖ x ⩵ (x ⊖ x1) x2 - (x ⊖ x2) x1

Since  B ⊖ x  is  expressed  as  a  linear  combination  of  x1  and  x2  it  is  clearly  contained  in  the
bivector B so that the exterior product of B with B ⊖ x is zero.

B ⋀ (B ⊖ x) ⩵ 0

The resulting vector B ⊖ x is also orthogonal to x. We can show this by taking its scalar product
with x, and then using formula [1.24].

(B ⊖ x) ⊖ x ⩵ B ⊖ (x ⋀ x) ⩵ 0

If B1 is the unit bivector of B, the projection x♯ of x onto B is given by

x♯ ⩵ - B
B
⊖ B

B
⊖ x

The component x∟ of x orthogonal to B is given by

x∟ ⩵ B
B
⋀ x ⊖ B

B

It is easily shown that the sum of these two components is equal to x.

x ⩵ x♯ + x∟

In the diagram below we depict these relationships. But remember that the vectors and bivector
are only docked in a convenient location.
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The interior product of a bivector with a vector

These  concepts  may  easily  be  extended  to  geometric  entities  of  higher  grade.  We will  explore
them further in Chapter 6.

The cross product

The cross or vector product of the three-dimensional vector calculus of Gibbs et al. [Gibbs 1928]
corresponds to two operations in Grassmann’s more general  calculus.  Taking the cross-product
of  two  vectors  in  three  dimensions  corresponds  to  taking  the  complement  of  their  exterior
product.  However,  whilst  the  usual  cross  product  formulation is  valid  only  for  vectors  in  three
dimensions, the exterior product formulation is valid for elements of any grade in any number of
dimensions. Therefore the opportunity exists to generalize the concept.
Because  our  generalization  reduces  to  the  usual  definition  under  the  usual  circumstances,  we
take  the  liberty  of  continuing  to  refer  to  the  generalized  cross  product  as,  simply,  the  cross
product.
Let A and B be elements of any grade, then their cross product is denoted A×B and is defined as
the complement of their exterior product. The cross product of an m-element and a k-element is
thus an (n–(m+k))-element.

A × B ⩵ A ⋀ B   1.33

This  definition  preserves  the  basic  property  of  the  cross  product:  that  the  cross  product  of  two
elements is an element orthogonal to both, and reduces to the usual notion for vectors in a three
dimensional  metric  vector  space.  For  1-elements  xi  the  definition  has  the  following  conse-
quences, independent of the dimension of the space.
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◼ The triple cross product is a 1-element in any number of dimensions.

(x1 × x2) × x3 ⩵ (x1 ⋀ x2) ⊖ x3 ⩵ (x3 ⊖ x1) x2 - (x3 ⊖ x2) x1   1.34

◼ The box product,  or  scalar  triple product,  is  an (n–3)-element,  and therefore a scalar  only in
three dimensions.

(x1 × x2) ⊖ x3 ⩵ x1 ⋀ x2 ⋀ x3   1.35

◼ The scalar product of two cross products is a scalar in any number of dimensions.

(x1 × x2) ⊖ (x3 × x4) ⩵ (x1 ⋀ x2) ⊖ (x3 ⋀ x4)   1.36

◼ The cross product of two cross products is a (4–n)-element, and therefore a 1-element only in
three dimensions. It corresponds to the regressive product of two exterior products.

(x1 × x2) × (x3 × x4) ⩵ (x1 ⋀ x2) ⋁ (x3 ⋀ x4)   1.37

The cross product of  the three-dimensional  vector calculus requires the space to have a metric,
since  it  is  defined  to  be  orthogonal  to  its  factors.  Equation  [1.37]  however,  shows  that  in  this
particular case, the result does not explicitly require a metric.

1.7  Summary

Summary of operations

In  this  chapter  we have briefly  introduced the  four  fundamental  operations  which underpin  the
Grassmann algebra: the exterior product, the regressive product, the complement operation, and
the interior  product.  They have been introduced in  this  sequence because each one depends on
those preceding.
The  exterior  product  is  the  first  of  the  fundamental  operations  upon  which  all  the  others  are
based.  It  encodes  the  notion  of  linear  independence  in  a  way that  enables  higher  order  entities
(for example, lines and planes) to be constructed from lower order ones (for example, points and
vectors).
The regressive product was introduced as a true dual product operation to the exterior product. It
is a true dual because its axioms can be derived from the axioms of the exterior product and vice-
versa.   The  intersection  of  two  lines  in  the  plane  was  computed  using  the  regressive  product,
previewing how it will be particularly powerful in Projective Geometry to compute intersections
of any geometric entities in any space.
The exterior and regressive products, although they can build entities and intersect them, cannot
measure  or  compare  any  of  them  unless  they  are  congruent.  For  example,  given  two  vectors
which  are  not  scalar  multiples  of  each  other,  the  two  products  do  not  lead  to  any  invariant
mechanism for deciding which is ‘larger’. To do this we need to provide the algebra with more
information  with  which  to  make  its  decisions.  The  complement  operation  introduces  just  such
information.
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The exterior and regressive products, although they can build entities and intersect them, cannot
measure  or  compare  any  of  them  unless  they  are  congruent.  For  example,  given  two  vectors
which  are  not  scalar  multiples  of  each  other,  the  two  products  do  not  lead  to  any  invariant
mechanism for deciding which is ‘larger’. To do this we need to provide the algebra with more
information  with  which  to  make  its  decisions.  The  complement  operation  introduces  just  such
information.
The complement operation is a rule (or mapping) which, given an element, A say, of the algebra
enables us to correspond an element  A,  such that  the exterior  product  of  A  with A  is  equal  to  a
scalar multiple of the unit n-element of the space; and the regressive product of A with A is equal
simply to this scalar multiple. If we take this scalar to be the square of a quantity which we call
the  measure  or  magnitude  of  A,  we  find  a  beautiful  correspondence  between  magnitudes  com-
puted  thus,  and  the  commonly  accepted  magnitudes  associated  with  geometric  figures.  For
example the magnitude of a vector corresponds to its length, the magnitude of a bivector corre-
sponds to the area of any of the parallelograms formed from its vectors, and the magnitude of a
trivector corresponds to the volume of any of the parallelepipeds formed from its vectors.
The complement mapping can be defined on the elements of any basis chosen for the underlying
linear space of the algebra and induced onto the rest of the algebra. That is, once we can measure
basis elements, we can measure any entity of the algebra. This ability to measure in a way which
conforms to our notions of physical measurement of geometric objects is so important that this
scalar square of the magnitude of the element A is defined to be a new product: the inner product
of A with itself - defined as the regressive product of A with its complement. It is straightforward
then to extend this to general elements by defining the interior product of A with B as the regres-
sive product of A with the complement of B.

Summary of objects

In  the  previous  section  we  have  discussed  the  fundamental  operations  of  Grassmann  algebra.
However,  an  important  contributor  to  the  power  of  the  algebra  is  that  its  objects  may  be
endowed with different geometric interpretations. 
0.  A multilinear algebra like the Grassmann algebra is just the algebra you need when you have
more than one independent  object.  Like all  mathematics,  it  is  devoid of  interpretation,  existing
only as a set of objects, and a consistent set of operations and rules.
1.  Interpreting all the basic objects of a multilinear algebra with just the exterior and regressive
products as ‘directed line segments with no location’ gives us vector geometry.
2.   If  to  vector  geometry  we  add  another  object,  and  interpret  it  as  the  ‘origin  point’,  we  get
projective geometry.
3.   If to vector geometry we add a rule for measuring and comparing the objects we get metric
vector geometry.
4.   If  to  projective  geometry  we  add  a  rule  for  measuring  and  comparing  the  objects  we  get
metric projective geometry.
5.   Some physical  phenomena  can  be  modelled  by  one  or  more  of  these  types  of  geometry  by
representing the physical ‘objects’ by geometric ones.
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